Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Org Divers Evol ; 23(4): 811-832, 2023.
Article in English | MEDLINE | ID: mdl-38046836

ABSTRACT

Molecular genetic analyses of Caribbean populations of the supposedly widespread intertidal oribatid mite Alismobates inexpectatus revealed the existence of a cryptic species. The new species, Alismobates piratus sp. n., shows considerable COI and 18S rRNA gene sequence divergences and although morphometric analyses indicate considerable variation between the taxa, no distinguishing morphological feature could be detected. The extreme intertidal environment is suggested to be responsible for the observed morphological stasis of the two species and vicariance is supposed to be responsible for their speciation. Alismobates piratus sp. n. was found on Hispaniola, Guadeloupe, Barbados and Curaçao indicating a predominant distribution on the Greater and Lesser Antilles, whereas the occurrence of A. inexpectatus is primarily restricted to Central America, the northern Caribbean and the Greater Antilles. Haplotype network analyses indicate distinct geographic structuring and the absence of recent gene flow among the Antillean A. piratus sp. n. populations. Central American and Antillean populations of A. inexpectatus show similar patterns but populations from Bermuda and the Bahamas are characterized by a common origin and subsequent expansion. Genetic landscape analysis demonstrates that vast stretches of open ocean, like the Caribbean Basin and the Western Atlantic, act as rather effective barriers, whereas the continuous continental coastline of Central and North America may facilitate dispersal. Genetic data also indicates that the Gulf Stream plays an important role for the biogeography of intertidal oribatid mites as it may be responsible for the strong link between Central and North American populations as well as for the colonization of Bermuda. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00624-9.

2.
PeerJ ; 11: e16021, 2023.
Article in English | MEDLINE | ID: mdl-37780373

ABSTRACT

Background: Claws are a commonly observed biological adaptation across a wide range of animal groups. They serve different functions and their link to evolution is challenging to analyze. While there are many studies on the comparative anatomy and morphology of claws in reptiles, birds and several arthropods, knowledge about claws of soil-living oribatid mites, is still limited. Recent research on intertidal oribatid mites has shown that claw shape is strongly correlated with microhabitat and is subject to ecological selective pressures. However, the selective constraints shaping claws in terrestrial oribatid mites are still unknown. Methods: In this study, 300 specimens from 12 different species and two genera were examined. Geometric morphometrics were used to quantify claw length and curvature, and to analyze two-dimensional claw shape. In combination with molecular phylogenetic analyses of investigated populations phylogenetic signal was quantified within genera using Blomberg's K and random replicates. Additionally, ecological information on the investigated species was gathered from previous studies and compiled into tables. Results: The claw shapes of Carabodes species vary moderately, with the three species C. reticulatus, C. rugosior and C. tenuis deviating the most from the others. These three species are only found in a small number of habitats, which may require a more specialized claw shape. Our results show that there is a phylogenetic influence on claw shape in Carabodes but not in Caleremaeus. Additionally, habitat specificity and lifestyle were found to have ecological impact on claw shape in both genera. The present results demonstrate that characteristics of the claws of terrestrial oribatid mites are correlated with ecology, but this correlation is apparently weaker than in intertidal oribatid mites that are prone to strong external forces.


Subject(s)
Mites , Animals , Phylogeny , Mites/genetics , Ecosystem , Environment , Soil
3.
PLoS One ; 17(6): e0268694, 2022.
Article in English | MEDLINE | ID: mdl-35679240

ABSTRACT

Austria is inhabited by more than 80 species of native and non-native freshwater fishes. Despite considerable knowledge about Austrian fish species, the latest Red List of threatened species dates back 15 years and a systematic genetic inventory of Austria's fish species does not exist. To fulfill this deficit, we employed DNA barcoding to generate an up-to-date and comprehensive genetic reference database for Austrian fish species. In total, 639 newly generated cytochrome c oxidase subunit 1 (COI) sequences were added to the 377 existing records from the BOLD data base, to compile a near complete reference dataset. Standard sequence similarity analyses resulted in 83 distinct clusters almost perfectly reflecting the expected number of species in Austria. Mean intraspecific distances of 0.22% were significantly lower than distances to closest relatives, resulting in a pronounced barcoding gap and unique Barcode Index Numbers (BINs) for most of the species. Four cases of BIN sharing were detected, pointing to hybridization and/or recent divergence, whereas in Phoxinus spp., Gobio spp. and Barbatula barbatula intraspecific splits, multiple BINs and consequently cryptic diversity were observed. The overall high identification success and clear genetic separation of most of the species confirms the applicability and accuracy of genetic methods for bio-surveillance. Furthermore, the new DNA barcoding data pinpoints cases of taxonomic uncertainty, which need to be addressed in further detail, to more precisely assort genetic lineages and their local distribution ranges in a new National Red-List.


Subject(s)
DNA Barcoding, Taxonomic , Fishes , Animals , Austria , DNA/genetics , DNA Barcoding, Taxonomic/methods , Fishes/genetics , Fresh Water , Phylogeny
4.
PLoS One ; 17(6): e0268964, 2022.
Article in English | MEDLINE | ID: mdl-35704591

ABSTRACT

A molecular genetic and morphometric investigation revealed the supposedly widespread Caribbean and Western Atlantic intertidal oribatid mite species Fortuynia atlantica to comprise at least two different species. Although there are no distinct morphological differences separating these taxa, COI and 18S sequence divergence data, as well as different species delimitation analyses, clearly identify the two species. Fortuynia atlantica is distributed in the northern Caribbean and the Western Atlantic and the new Fortuynia antillea sp. nov. is presently endemic to Barbados. Vicariance is supposed to be responsible for their genetic diversification and stabilizing selection caused by the extreme intertidal environment is suggested to be the reason for the found morphological stasis. The genetic structure of Fortuynia atlantica indicates that Bermudian populations are derived from the northern Caribbean and thus support the theory of dispersal by drifting on the Gulf Stream. Haplotype network data suggest that Bermudian and Bahamian populations were largely shaped by colonization, expansion and extinction events caused by dramatic sea level changes during the Pleistocene. A preliminary phylogenetic analysis based on 18S gene sequences indicates that the globally distributed genus Fortuynia may be a monophyletic group, whereas Caribbean and Western Atlantic members are distinctly separated from the Indo-Pacific and Western Pacific species.


Subject(s)
Mites , Animals , Barbados , Caribbean Region , Haplotypes , Mites/anatomy & histology , Mites/genetics , Phylogeny
5.
PeerJ ; 8: e9710, 2020.
Article in English | MEDLINE | ID: mdl-32974091

ABSTRACT

Bark beetles are feared as pests in forestry but they also support a large number of other taxa that exploit the beetles and their galleries. Among arthropods, mites are the largest taxon associated with bark beetles. Many of these mites are phoretic and often involved in complex interactions with the beetles and other organisms. Within the oribatid mite family Scheloribatidae, only two of the three nominal species of Paraleius have been frequently found in galleries of bark beetles and on the beetles themselves. One of the species, P. leontonychus, has a wide distribution range spanning over three ecozones of the world and is believed to be a host generalist, reported from numerous bark beetle and tree species. In the present study, phylogenetic analyses of one mitochondrial and two nuclear genes identified six well supported, fairly divergent clades within P. leontonychus which we consider to represent distinct species based on molecular species delimitation methods and largely congruent clustering in mitochondrial and nuclear gene trees. These species do not tend to be strictly host specific and might occur syntopically. Moreover, mito-nuclear discordance indicates a case of past hybridization/introgression among distinct Paraleius species, the first case of interspecific hybridization reported in mites other than ticks.

7.
PeerJ ; 7: e6753, 2019.
Article in English | MEDLINE | ID: mdl-30997294

ABSTRACT

BACKGROUND: The application of an appropriate extraction method is a relevant factor for the success of all molecular studies. METHODS: Seven different DNA extraction methods suitable for high-throughput DNA sequencing with very small arthropods were compared by applying nine different protocols: three silica gel based spin methods, two cetyltrimethyl ammonium bromide (CTAB) based ones (one with an additional silica membrane), a protein precipitation method and a method based on a chelating resin (applying different protocols). The quantity (concentration) and quality (degradation, contamination, polymerase chain reaction (PCR) and sequencing success) of the extracted DNA as well as the costs, preparation times, user friendliness, and required supplies were compared across these methods. To assess the DNA quantity, two different DNA concentration measurements were applied. Additionally, the effect of varying amounts of starting material (different body sizes), variable lysis temperatures and mixing during DNA extraction was evaluated. RESULTS: Although low DNA concentrations were measured for all methods, the results showed that-with the exception of two methods-the PCR success was 100%. However, other parameters show vast differences. The time taken to perform DNA extraction varied from 20 min to 2.5 h (Chelex vs. CTAB) and the costs from 0.02 to 3.46 € (Chelex vs. QIAamp kit) per sample. High quality genomic DNA was only gained from four methods. Results of DNA quantity measurements further indicated that some devices cannot deal with small amounts of DNA and show variant results. DISCUSSION: In conclusion, using Chelex (chelating resin) turned out as a rapid, low-cost method which can provide high quality DNA for different kinds of molecular investigations.

8.
Mol Phylogenet Evol ; 135: 185-192, 2019 06.
Article in English | MEDLINE | ID: mdl-30898693

ABSTRACT

The absence of obvious morphological differences between species impedes species identification in many groups of organisms. Such cryptic species appear to be particularly common in small-bodied animals, impacting species richness estimates. In this study we aimed at characterizing the molecular diversity of the Palearctic arboreal oribatid mite species Cymbaeremaeus cymba across large parts of Europe. Phylogenetic analyses of three molecular markers, including the COI barcoding region, identified eight well supported, fairly divergent clades within C. cymba, which we consider to represent distinct species based on molecular species delimitation methods. Intraspecific variation of the COI gene was extremely low in all putative species, contradicting previous assumptions of high intraspecific diversity in oribatid mites. The frequent co-occurrence of two species on a single tree suggests an ecological micro-niche differentiation. Contrary to previous studies on oribatid mites, we find that COI is a good marker for species delimitation and its further use for barcoding of oribatids is highly recommended. Furthermore, we provide descriptions of six new Cymbaeremaeus species and designate a neotype of C. cymba.


Subject(s)
Biodiversity , Mites/classification , Animals , Ecosystem , Europe , Genetic Markers , Geography , Phylogeny , Species Specificity
9.
J Zool Syst Evol Res ; 56(4): 505-518, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30395657

ABSTRACT

Species diversity is generally higher in the tropics compared to the temperate zones. The phenomenon that one species of an almost exclusively tropical living genus was able to adapt successfully to the cold northern regions is rather rare. However, the oribatid mite Dolicheremaeus dorni represents such a species and is in the focus of this study. While 180 Dolicheremaeus species are confined to the tropics and subtropics, only five species are known to occur in temperate climates and D. dorni represents the only species with a wider distribution in this climatic region. This species is distributed in Central and Southern Europe and was now recorded for the first time in Austria. A morphological and molecular genetic investigation of specimens from Austria, Poland and Croatia confirmed this distribution pattern and revealed specific geographic clades and haplotypes for each population and hence indicate low gene flow between populations. A further molecular genetic analysis of the 18S rRNA gene sequence of D. dorni confirmed its phylogenetic position within Carabodoidea. Based on record information, this species is associated with trees or tree habitats and seems to be rather a generalist than a specialist for a specific substrate (e.g., tree species) or food source.

10.
Sci Rep ; 8(1): 7558, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765106

ABSTRACT

Bilaterian mitochondrial (mt) genomes are circular molecules that typically contain 37 genes. To date, only a single complete mitogenome sequence is available for the species-rich sarcoptiform mite order Oribatida. We sequenced the mitogenome of Paraleius leontonychus, another species of this suborder. It is 14,186 bp long and contains 35 genes, including only 20 tRNAs, lacking tRNA Gly and tRNA Tyr . Re-annotation of the mitogenome of Steganacarus magnus increased the number of mt tRNAs for this species to 12. As typical for acariform mites, many tRNAs are highly truncated in both oribatid species. The total number of tRNAs and the number of tRNAs with a complete cloverleaf-like structure in P. leontonychus, however, clearly exceeds the numbers previously reported for Sarcoptiformes. This indicates, contrary to what has been previously assumed, that reduction of tRNAs is not a general characteristic for sarcoptiform mites. Compared to other Sarcoptiformes, the two oribatid species have the least rearranged mt genome with respect to the pattern observed in Limulus polyphemus, a basal arachnid species. Phylogenetic analysis of the newly sequenced mt genome and previously published data on other acariform mites confirms paraphyly of the Oribatida and an origin of the Astigmata within the Oribatida.


Subject(s)
Genome, Mitochondrial , Mites/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA/methods , Animals , Evolution, Molecular , Genome Size , Phylogeny
11.
PLoS One ; 12(3): e0174449, 2017.
Article in English | MEDLINE | ID: mdl-28358863

ABSTRACT

DNA-barcoding is a rapidly developing method for efficiently identifying samples to species level by means of short standard DNA sequences. However, reliable species assignment requires the availability of a comprehensive DNA barcode reference library, and hence numerous initiatives aim at generating such barcode databases for particular taxa or geographic regions. Historical museum collections represent a potentially invaluable source for the DNA-barcoding of many taxa. This is particularly true for birds and mammals, for which collecting fresh (voucher) material is often very difficult to (nearly) impossible due to the special animal welfare and conservation regulations that apply to vertebrates in general, and birds and mammals in particular. Moreover, even great efforts might not guarantee sufficiently complete sampling of fresh material in a short period of time. DNA extracted from historical samples is usually degraded, such that only short fragments can be amplified, rendering the recovery of the barcoding region as a single fragment impossible. Here, we present a new set of primers that allows the efficient amplification and sequencing of the entire barcoding region in most higher taxa of Central European birds and mammals in six overlapping fragments, thus greatly increasing the value of historical museum collections for generating DNA barcode reference libraries. Applying our new primer set in recently established NGS protocols promises to further increase the efficiency of barcoding old bird and mammal specimens.


Subject(s)
Birds/classification , Birds/genetics , DNA Barcoding, Taxonomic/methods , Mammals/classification , Mammals/genetics , Museums , Animals , Europe
12.
Cladistics ; 31(2): 202-209, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26074662

ABSTRACT

Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics.

13.
BMC Evol Biol ; 10: 246, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20701742

ABSTRACT

BACKGROUND: The use of molecular genetic data in phylogenetic systematics has revolutionized this field of research in that several taxonomic groupings defined by traditional taxonomic approaches have been rejected by molecular data. The taxonomic classification of the oribatid mite group Circumdehiscentiae ("Higher Oribatida") is largely based on morphological characters and several different classification schemes, all based upon the validity of diagnostic morphological characters, have been proposed by various authors. The aims of this study were to test the appropriateness of the current taxonomic classification schemes for the Circumdehiscentiae and to trace the evolution of the main diagnostic traits (the four nymphal traits scalps, centrodorsal setae, sclerits and wrinkled cuticle plus octotaxic system and pteromorphs both in adults) on the basis of a molecular phylogenetic hypothesis by means of parsimony, likelihood and Bayesian approaches. RESULTS: The molecular phylogeny based on three nuclear markers (28S rDNA, ef-1alpha, hsp82) revealed considerable discrepancies to the traditional classification of the five "circumdehiscent" subdivisions, suggesting paraphyly of the three families Scutoverticidae, Ameronothridae, Cymbaeremaeidae and also of the genus Achipteria. Ancestral state reconstructions of six common diagnostic characters and statistical evaluation of alternative phylogenetic hypotheses also partially rejected the current morphology-based classification and suggested multiple convergent evolution (both gain and loss) of some traits, after a period of rapid cladogenesis, rendering several subgroups paraphyletic. CONCLUSIONS: Phylogenetic studies revealed non-monophyly of three families and one genus as a result of a lack of adequate synapomorphic morphological characters, calling for further detailed investigations in a framework of integrative taxonomy. Character histories of six morphological traits indicate that their evolution followed a rather complex pattern of multiple independent gains (and losses). Thus, the observed pattern largely conflicts with current morphological classifications of the Circumdehiscentiae, suggesting that the current taxonomic classification schemes are not appropriate, apart from a recently proposed subdivision into 24 superfamilies.


Subject(s)
Acari/classification , Evolution, Molecular , Phylogeny , Acari/anatomy & histology , Acari/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , Likelihood Functions , Sequence Alignment , Sequence Analysis, DNA
14.
Mol Phylogenet Evol ; 55(2): 677-88, 2010 May.
Article in English | MEDLINE | ID: mdl-20006724

ABSTRACT

The soil and moss dwelling oribatid mite family Scutoverticidae is considered to represent an assemblage of distantly related but morphologically similar genera. We used nucleotide sequences of one mitochondrial (COI) and two nuclear (28S rDNA, ef-1alpha) genes, and 79 morphological characters to elucidate the phylogenetic relationships among 11 nominal plus two undescribed European mite species of the family Scutoverticidae with a particular focus on the genus Scutovertex. Both molecular genetic and morphological data revealed a paraphyletic genus Scutovertex, with S. pictus probably representing a distinct genus, and Provertex kuehnelti was confirmed as member of the family Scutoverticidae. Molecular genetic data confirmed several recently described Scutovertex species and thus the high species diversity within this genus in Europe and suggest that S. sculptus represents a complex of several cryptic species exhibiting marked genetic, but hardly any morphological divergence.


Subject(s)
Evolution, Molecular , Genetic Speciation , Mites/genetics , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Europe , Mites/anatomy & histology , Mites/classification , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...